32,620 research outputs found

    Aerodynamic characteristics of a 1/6-scale powered model of the rotor systems research aircraft

    Get PDF
    A wind-tunnel investigation was conducted to determine the effects of the main-rotor wake on the aerodynamic characteristics of the rotor systems research aircraft (RSRA). For the investigation, a 1/6-scale model with a four-blade articulated main rotor was used. Tests were conducted with and without the main rotor. Both the helicopter and the compound helicopter were tested. The latter configuration included the auxiliary thrust engines and the variable-incidence wing. Data were obtained over ranges of angle of attack, angle of sideslip, and main-rotor collective pitch angle at several main-rotor advance ratios. Results are presented for the total loads on the airframe as well as the loads on the rotor, the wing, and the tail. The results indicated that without the effect of the rotor wake, the RSRA had static longitudinal and directional stability and positive effective dihedral. With the effect of the main rotor and its wake, the RSRA exhibited longitudinal instability but retained static directional stability and positive effective dihedral

    Clinical and magnetic resonance imaging features of idiopathic oculomotor neuropathy in 14 dogs: Canine Idiopathic Oculomotor Neuropathy

    Get PDF
    Ophthalmoplegia/ophthalmoparesis (internal, external, or both) has been reported in dogs secondary to neoplasia affecting the oculomotor nerve and is usually given a poor prognosis. The purpose of this retrospective study was to describe the clinical findings, magnetic resonance imaging (MRI) findings, management, outcome, and follow-up in a group of canine cases with idiopathic oculomotor neuropathy. Inclusion criteria included cases with ophthalmoplegia/ophthalmoparesis (internal, external or both) as sole neuroophthalmologic signs, complete ophthalmic and neurologic examination, head MRI, and a minimum follow-up period of 1 year. Dogs with progressive neurological signs not related to oculomotor neuropathy were excluded. Fourteen cases met the inclusion criteria. All cases were unilaterally affected. Magnetic resonance imaging showed equivocal enlargement of the oculomotor nerve in three cases, mild enlargement in five, and marked enlargement in six. Contrast enhancement was present in 12 cases, being marked in six. When present, the contrast enhancement was focal in eight cases and diffuse in four. The median follow-up time was 25 months. External ophthalmoparesis improved in seven cases, five cases under no treatment and two under systemic corticosteroid therapy. The clinical signs in the other seven cases remained unchanged. Idiopathic oculomotor neuropathy should be included as a differential diagnosis in dogs presenting with unilateral ophthalmoplegia/ophthalmoparesis (internal, external, or both) with the absence of other neurologic and ophthalmic signs, and with the MRI findings restricted to the oculomotor nerve. Idiopathic oculomotor neuropathy has a good prognosis as the clinical signs do not deteriorate and they can improve without treatment

    Project for the analysis of technology transfer

    Get PDF
    The special task of preparing technology transfer profiles during the first six months of 1971 produced two major results: refining a new method for identifying and describing technology transfer activities, and generating practical insights into a number of issues associated with transfer programs

    Project for the analysis of technology transfer Quarterly reports, 1 Jul. - 31 Dec. 1970

    Get PDF
    Summary of research activities of Project for Analysis of Technology Transfer for period 1 July - 31 Dec. 197

    Aerodynamic characteristics of a powered tilt-proprotor wind tunnel model

    Get PDF
    An investigation was conducted in the Langley V/STOL tunnel to determine the performance, stability and control, and rotor-wake interaction effects of a powered tilt-proprotor aircraft model with gimbal-hub rotors. Tests were conducted at representative flight conditions for hover, helicopter, transition, and airplane flight. Force and moment data were obtained for the complete model and for each of the two rotors. In addition to wind-speed variation, the angle of attack, angle of sideslip, rotor speed, rotor collective pitch, longitudinal cyclic pitch, rotor pylon angle, and configuration geometry were varied. The results, presented in graphical form, are available in tabular form to facilitate the validation of analytical methods of defining the aerodynamic characteristics of tilt-proprotor configurations

    Supersonic dynamic stability characteristics of a space shuttle orbiter

    Get PDF
    Supersonic forced-oscillation tests of a 0.0165-scale model of a modified 089B Rockwell International shuttle orbiter were conducted in a wind tunnel for several configurations over a Mach range from 1.6 to 4.63. The tests covered angles of attack up to 30 deg. The period and damping of the basic unaugmented vehicle were calculated along the entry trajectory using the measured damping results. Some parameter analysis was made with the measured dynamic derivatives. Photographs of the test configurations and test equipment are shown

    Aerodynamic characteristics of a 1/6-scale model of the rotor systems research aircraft with the rotors removed

    Get PDF
    A wind-tunnel investigation was conducted to refine the aerodynamic characteristics of the rotor systems research aircraft. For the investigation, a 1/6-scale model without a main rotor or a tail rotor was used. The model provided the capability for testing different engine nacelle sizes, engine pylon fairings, and tail configurations. The engine thrust effects were modeled by small engine simulators (fans). Data were obtained primarily over an angle-of-attack range from -13 deg to 13 deg at several values of sideslip. Stability characteristics and control effectiveness were investigated. The model with the scaled engine nacelles and the combination T-tail and lower horizontal tail displayed longitudinal and lateral-directional stability. Results show that by reducing the horizontal or vertical-tail span the longitudinal stability is decreased. Reducing the engine nacelle size increases the static stability of the model. Effective dihedral is essentially zero at 0 deg angle of attack and 0 deg wing incidence

    A Deformable Model for Magnetic Vortex Pinning

    Get PDF
    A two-parameter analytical model of the magnetic vortex in a thin disk of soft magnetic material is constructed. The model is capable of describing the change in evolution of net vortex state magnetization and of core position when the vortex core interacts with a magnetic pinning site. The model employs a piecewise, physically continuous, magnetization distribution obtained by the merger of two extensively used one-parameter analytical models of the vortex state in a disk. Through comparison to numerical simulations of ideal disks with and without pinning sites, the model is found to accurately predict the magnetization, vortex position, hysteretic transitions, and 2-D displacement of the vortex in the presence of pinning sites. The model will be applicable to the quantitative determination of vortex pinning energies from measurements of magnetization.Comment: 27 pages, 7 figures, including supplementary information, ancillary files:3 supplementary movie
    corecore